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Abstract

Poisson manifolds may be regarded as the infinitesimal form of symplectic groupoids. Twisted
Poisson manifolds considered by Ševera and Weinstein [Prog. Theor. Phys. Suppl. 144 (2001)
145] are a natural generalization of the former which also arises in string theory. In this note it is
proved that twisted Poisson manifolds are in bijection with a (possibly singular) twisted version of
symplectic groupoids.
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1. Introduction

Poisson manifolds may be regarded as the infinitesimal form of symplectic groupoids
[6], i.e., Lie groupoids endowed with a multiplicative symplectic form. Up to singularities,
Poisson manifolds may be integrated to symplectic groupoids as described in[2] (conditions
under which integration with no singularities is possible are given in[4]). In this paper we
generalize this result to the case when the two structures (of symplectic groupoid and of
Poisson manifold) are twisted by a closed 3-form.

LetM be a smooth manifold. A pair(π, φ), whereπ is a bivector field andφ is a closed
3-form, is called atwisted Poisson structureif it satisfies the equation

[π, π] = 1
2 ∧3 π#φ, (1.1)
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where [, ] denotes the Schouten–Nijenhuis bracket andπ# is the vector bundle homomor-
phismT ∗M → TM induced byπ (viz., π#(x)(σ) := π(x)(σ, •), with x ∈ M, σ ∈ T ∗x M).
According to[14], one also says thatπ is aφ-Poisson tensor. In the caseφ = 0 one recovers
the usual notions of Poisson tensor and Poisson manifold. Twisted Poisson structures have
been extensively studied in the physics literature, e.g.[5,9,11].

As explained in[14], a twisted Poisson structure induces a Lie algebroid structure on
T ∗M with anchor mapπ# and Lie bracket of sectionsσ andτ defined by

[σ, τ] := Lπ#στ − Lπ#τσ − dπ(σ, τ)+ φ(π#σ, π#τ, •). (1.2)

In particular,∀f, g ∈ C∞(M) we have:

[df,dg] = d{f, g} + φ(Xf ,Xg, •), (1.3)

and

[Xf ,Xg] = X{f,g} + π#(φ(Xf ,Xg, •)), (1.4)

with {f, g} = π(df,dg) andXf = π# df .
We will denote this Lie algebroid byT ∗M(π,φ). Sections of its exterior algebra are ordinary

differential forms. One may define a derivationδ deforming the de Rham differential by
φ; viz., we define a graded derivationδ : Ω∗(M) → Ω∗+1(M) by settingδf = df if
f ∈ C∞(M) and

δσ = dσ − ιπ#σφ,

if σ ∈ Ω1(M). It turns out that

δ[σ, τ] = [δσ, τ] + [σ, δτ], ∀σ, τ ∈ Ω1(M),

and thatδ2 = [φ, •] (where we have extended the Lie bracket to the whole ofΩ∗(M) as a
biderivation). So(T ∗M(π,φ), δ) constitutes an example of a quasi-Lie bialgebroid[8,12], a
generalization of Drinfeld’s quasi-Lie bialgebras[7,10].

If T ∗M(π,φ) may be integrated to a Lie groupoid(G ⇒ M,α, β) (i.e., if it exists a Lie
groupoidG whose Lie algebroid isT ∗M(π,φ)), the differentialδ induces extra structure on
G. Namely, denoting byα andβ the source and target maps ofG, thenG may be endowed
with a non-degenerate, multiplicative 2-formω that satisfies

dω = α∗φ − β∗φ.

In other words,(ω, φ) is a 3-cocycle for the double complexΩ∗(G(∗)), whereG(0) = M,
G(1) = G and elements ofG(k) arek-tuples of elements ofG that may be multiplied (in the
given order). One differential is de Rham and the other is the groupoid-complex differential.
Observe that in the true Poisson case (i.e.,φ = 0),ω is closed, soG is an ordinary symplectic
groupoid. In the general case,G is called anon-degenerate twisted symplectic groupoid,
and the non-degenerate 2-formω is said to berelativelyφ-closed. The main theorem of the
paper (conjectured in[14]) is the following one.

Theorem. There is a bijection between integrable twisted Poisson structures and source-
simply connected non-degenerate twisted symplectic groupoids.
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Here “integrable twisted Poisson structure” means that the associated Lie algebroid is
integrable.

In Section 2we give an introduction to non-degenerate twisted symplectic groupoids and
prove that they induce twisted Poisson structures on the base manifolds (Theorem 2.6on
page 7).

In Section 5we prove the theorem, though in a more general setting. In fact, as shown in
the generalization[3] (see also[13]) of the construction given in[2]), to any Lie algebroid
A one can associate a topological source-simply connected groupoidG(A), which is the
Lie groupoid integratingA wheneverA is integrable. The topological groupoidG(A) is
defined as the leaf space of a smooth foliation, as we recall inSection 3; so it makes sense
to define on it a notion of smooth functions and forms. In the case whenA is T ∗M(π,φ), we
prove thatG(A) may always be endowed with a non-degenerate, multiplicative, relatively
φ-closed 2-formω. The construction is a modification, described inSection 4, of the method
developed in[2], where the true Poisson case (i.e.,φ = 0) was dealt with.

As a final remark, we mention that general multiplicative 2-forms, their infinitesimal
counterparts and their integrations are being treated in[1].

2. Non-degenerate twisted symplectic groupoids

Definition 2.1. A non-degenerate twisted symplectic groupoid is a Lie groupoid(G ⇒
M,α, β) equipped with a non-degenerate 2-formω ∈ Ω2(G) and a 3-formφ ∈ Ω3(M)

such that:

1. dφ = 0;
2. dω = α∗φ − β∗φ;
3. ω is multiplicative, i.e., the 2-form(ω, ω,−ω) vanishes when being restricted to the

graph of the groupoid multiplicationΛ ⊂ G×G×G.

Let πG denote the bivector field onG corresponding toω. Then(πG,Ω), whereΩ =
α∗φ − β∗φ, defines a twisted Poisson structure onG in the sense of[14].

For anyξ ∈ Γ(A), by �ξ and �ξ we denote its corresponding right and left invariant vector
fields on the groupoidG, respectively. The following properties can be easily verified.

Proposition 2.2.

1. ε∗ω = 0, whereε : M → G is the natural embedding;
2. i∗ω = −ω, wherei : G→ G is the groupoid inversion;
3. for anyξ, η ∈ Γ(A), ω(�ξ, �η) is a right invariant function on G, andω( �ξ , �η ) is a left

invariant function on G;
4. ω(�ξ, �η ) = 0;

5. ω(�ξ, �η)(x) = −ω( �ξ , �η )(x−1).

Proof. The proof is standard, and essentially follows from the multiplicativity ofω:

1. For any δ′m, δ′′m ∈ TmM, since (δ′m, δ′m, δ′m), (δ′′m, δ′′m, δ′′m) ∈ TΛ, it follows that
ω(δ′m, δ′′m) = 0.
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2. ∀x ∈ G and∀δ′x, δ′′x ∈ TxG, it is clear that(δ′x, i∗δ′x, α∗δ′x), (δ′′x, i∗δ′′x, α∗δ′′x) ∈ TΛ. Thus,
by (1), we have

ω(δ′x, δ
′′
x)+ ω(i∗δ′x, i∗δ

′′
x) = 0,

and (2) follows.
3. For anyξ, η ∈ Γ(A), (�ξ(x),0y, �ξ(xy)), (�η(x),0y, �η(xy)) ∈ TΛ. Thus

ω(�ξ(x), �η(x))− ω(�ξ(xy), �η(xy)) = 0.

Henceω(�ξ, �η) is a right invariant function onG. Similarly,ω( �ξ , �η ) is a left invariant
function onG.

4. By considering the vectors(�ξ(x),0β(x), �ξ(x)) and(0x, �η (β(x)), �η (x)) ∈ TΛ, we obtain

ω(�ξ(x), �η (x)) = 0.

5. Follows from (2) and the fact thati∗�ξ = − �ξ . �

Define a sectionγ ∈ Γ(∧2A∗) and a bundle map:λ : A→ T ∗M by

ω(�ξ, �η) = α∗γ(ξ, η), ∀ξ, η ∈ Γ(A), (2.1)

and

〈λ(ξ), v〉 = ω(�ξ(m), v), ∀ξ ∈ A|m, v ∈ TmM. (2.2)

Lemma 2.3.

1. ω( �ξ , �η ) = −β∗γ(ξ, η),∀ξ, η ∈ Γ(A);
2. for all ξ, η ∈ Γ(A),

γ(ξ, η) = 〈ρ(ξ), λ(η)〉; (2.3)

3. λ : A→ T ∗M is a vector bundle isomorphism.

Proof.

1. Follows fromProposition 2.2(5).
2. We have

ω(�ξ, �η) = ω(�ξ − �ξ , �η) = ω(�η, ρ(ξ)) = 〈ρ(ξ), λ(η)〉.
3. Assume thatλ(ξ) = 0. That is,ω(�ξ(m), v) = 0,∀v ∈ TmM, which implies that�ξ(m)ω =

0 by Proposition 2.2(4). Henceξ = 0 sinceω is non-degenerate. This means thatλ is
injective. On the other hand, assume thatv ∈ (λ(A|m))⊥. Thenω(�ξ(m), v) = 0,∀ξ ∈
A|m. Thusvω = 0 usingProposition 2.2(1), which implies thatv = 0. Thereforeλ is
surjective. �

Lemma 2.4. For anyf ∈ C∞(M)

−−−−→
λ−1(df) = Xα∗f ;

←−−−−
λ−1(df) = Xβ∗f . (2.4)

Proof. First, one shows thatXα∗f is a right invariant vector field onG andXβ∗f is a left
invariant vector field. This can be shown using the same argument as in the case of symplectic
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groupoids[6]. Namely the multiplicativity ofω together with dimension counting implies
that the graphΛ is coisotropic with respect to(πG, πG,−πG). The later implies thatXα∗f
is a right invariant vector field onG andXβ∗f is a left invariant vector field.

Second, for anyv ∈ TmM, we have

ω(Xα∗f (m), v) = 〈α∗ df(m), v〉 = 〈df(m), α∗v〉 = 〈df(m), v〉.

It thus follows thatλ(Xα∗f ) = df , or
−−−−→
λ−1(df) = Xα∗f . The other equation can be proved

similarly. �

By pulling back the 2-formγ ∈ Γ(∧2A∗) via λ−1, one obtains a bivector fieldπ ∈
Γ(∧2TM). We introduce a bracket and Hamiltonian vector fields by the usual definitions,
i.e.,{f, g} = π(df,dg) andXf = π#(df).

Corollary 2.5.

α∗πG = π; β∗πG = −π; (2.5)

or equivalently

α∗Xα∗f = Xf ; β∗Xβ∗f = −Xf , ∀f ∈ C∞(M). (2.6)

Proof. For anyf, g ∈ C∞(M),

{α∗f, α∗g} = ω(Xα∗f ,Xα∗g) = ω(
−−−−→
λ−1(df),

−−−−→
λ−1(dg)) = α∗(π(df,dg)) = α∗{f, g}.

Similarly, we have{β∗f, β∗g} = −β∗{f, g}. �

We are now ready to prove the main result of the section.

Theorem 2.6.

1. π is aφ-Poisson tensor in the sense of[14], i.e., it satisfies(1.1).
2. The bundle mapλ : A→ T ∗M establishes a Lie algebroid isomorphism, where the Lie

algebroid onT ∗M is induced by the twisted Poisson tensorπ as given byEq. (1.2).

Proof. LetΩ = α∗φ − β∗φ. Thus∀f, g ∈ C∞(M)

(Xα∗f ∧Xα∗g)Ω = (Xα∗f ∧Xα∗g)α
∗φ = α∗[(α∗Xα∗f ∧ α∗Xα∗g)φ] = α∗[Xf ∧Xgφ].

Thus byEq. (1.4)

[Xα∗f ,Xα∗g] −X{α∗f,α∗g} = π#
G(Ω(Xα∗f ,Xα∗g, •) = π#

G(α
∗φ(Xf ,Xg, •)).

Thus it follows that

λ[Xα∗f ,Xα∗g] = d{f, g} + φ(Xf ,Xg, •).
Note thatλ intertwines the anchors:π# ◦ λ = ρ, according toEq. (2.3). Therefore, using
Lie algebroid properties, one shows that the push forward Lie algebroid onT ∗M via λ is
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given byEq. (1.2). This forces, by the Jacobi identity,π to beφ-Poisson, andλ is a Lie
algebroid isomorphism betweenA and(T ∗M)π,φ. �

3. Integration of T ∗M(π,φ)

We briefly describe the integration procedure for Lie algebroids of[3,13], adapted to
the case ofT ∗M(π,φ). First one defines the manifoldP(T ∗M(π,φ)) of C1-Lie algebroid
morphismsTI→ T ∗M(π,φ), whereI is the interval [0,1] andTI is given its canonical Lie
algebroid structure. An element ofPT∗M(π,φ) consists of aC2-pathX : I → M together
with a sectionη of T ∗I ⊗X∗T ∗M satisfying

dX = π#(X)η.

On this manifold one may consider as equivalent two elements which are related by a Lie
algebroid morphismT(I × I) → T ∗M(π,φ) that fixes the endpoints. The quotient space
G(T ∗M(π,φ)) may be given a groupoid structure. For our purposes it is however better to
use a different description ofG(T ∗M(π,φ)), i.e., as the leaf space of a foliation. Namely, let
P0Γ(T

∗M(π,φ)) be the space ofC2-paths in the Lie algebra of sections ofT ∗M(π,φ) with
endpoints at zero. We give this space the structure of a Lie algebra by the pointwise Lie
bracket. One may then define an infinitesimal action of this Lie algebra onP(T ∗M(π,φ)).
To describe it, we prefer to introduce local coordinates{xi} onM (alternatively, one may
use a torsion-free connection). Since{dxi} is a local basis of sections ofT ∗M(π,φ), we may
define structure functionsf by

[dxi,dxj] = f
ij
k dxk,

where a sum over repeated indices is understood. If we write locallyπ = πij∂i∂j and
φ = φijk dxi dxj dxk, we may compute:

f
ij
k = ∂kπ

ij + πmiπnjφmnk.

The action is then as follows. ToB ∈ P0Γ(T
∗M(π,φ)) we associate a vector fieldξB

on P(T ∗M(π,φ)). We can always writeξB = ξhB + ξvB with ξhB(X, η) ∈ Γ(I,X∗TM) and
ξvB(X, η) ∈ Γ(I, T ∗I ⊗X∗T ∗M). We set then

(ξhB(X, η))
i = −πij (X) (BX)j, (3.1a)

(ξvB(X, η))i = −d(BX)i − f rs
i (X) ηr (BX)s, (3.1b)

whereBX is the section ofX∗T ∗M defined byBX(t) = B(t)(X(t)).
Thus, the infinitesimal action ofP0Γ(T

∗M(π,φ)) defines a foliation onP(T ∗M(π,φ)) and
G(T ∗M(π,φ)) is its quotient space. Let us briefly recall its groupoid structure. The target
mapα associates to a class of morphisms(X, η) the value ofX at 0, while the source
mapβ associates it to the value ofX at 1 (observe that the infinitesimal action preserves
the endpoints ofX). The identity section associates to a pointm in M the classε(m) of
the constant path atm with η = 0. The product is obtained by joining the base paths and
restricting the fiber maps consequently (the product is more precisely defined on smooth
representatives such thatη vanishes with its derivatives at the endpoints).
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4. Quasi-symplectic reduction

In this section we describe how to obtainG(T ∗M(π,φ)) by some sort of symplectic re-
duction, though our replacement for a symplectic form will be a non-degenerate but not
necessarily closed 2-form.

Let T ∗PM denote the manifold ofC1-bundle mapsTI → T ∗M (overC2-maps). This
space is morally a cotangent bundle and as such it has a canonical symplectic structure
Ω0. Explicitly, a point inT ∗PM is a pair(X, η), whereX is aC2-pathI → M andη is a
C1-section ofT ∗I⊗X∗T ∗M. The tangent space at(X, η) is the direct sum ofT h

(X,η)T
∗PM=

Γ(I,X∗TM) andT v
(X,η)T

∗PM= Γ(I, T ∗I ⊗X∗T ∗M). Using this splitting, we write

Ω0(X, η)(ξ1⊕ e1, ξ2⊕ e2) =
∫
I

〈e1, ξ2〉 − 〈e2, ξ1〉, (4.1)

where〈 , 〉 denotes the canonical pairing between tangent and cotangent fibers ofM.
Using the 3-formφ onM we may also define a second 2-form onT ∗PM:

Ω1(X, η)(ξ1⊕ e1, ξ2⊕ e2) = 1

2

∫
I

φ(X)(π#(X)η, ξ1, ξ2). (4.2)

The 2-formΩ = Ω0+Ω1 is still non-degenerate but no longer closed.
The manifoldP(T ∗M(π,φ)) introduced in the previous section may be regarded as a

submanifold ofT ∗PM. If we introduce “momentum maps”H : T ∗PM→ P0Γ(T
∗M(π,φ))

∗
by

HB(X, η) =
∫
I

〈BX,dX− π#(X)η〉,

thenP(T ∗M(π,φ)) is H−1(0). One may check that dHB lies in the image ofΩ for any
B ∈ P0Γ(T

∗M(π,φ)); so, sinceΩ is non-degenerate, one may define a mapB → ξ̂B that
associates a vector field̂ξB onT ∗PM toB by

ι
ξ̂B
Ω = dHB. (4.3)

One may easily check that the restriction ofξ̂B toP(T ∗M(π,φ)) is tangent to it. More to the
point, one may check that the vector field onP(T ∗M(π,φ)) so obtained is precisely theξB
of (3.1)which defines the infinitesimal action ofP0Γ(T

∗M(π,φ)) onP(T ∗M(π,φ)).

5. Proof of the theorem

In the setting of the previous section, we want to prove that the restrictionΩ
¯

of Ω
to P(T ∗M(π,φ)) is basic w.r.t. to the projectionp : P(T ∗M(π,φ)) → G(T ∗M(π,φ)), viz.,
Ω
¯
= p∗ω; moreover, we want to prove thatω satisfies all the required conditions.
Observe thatΩ

¯
is automatically horizontal by(4.3). On the other hand, unlike the usual

symplectic case, it is not clear thatΩ
¯

is also invariant; in fact, at first, we may only see that
LξBΩ¯

= ιξB dΩ
¯
= ιξB dΩ

¯1, whereΩ
¯1 denotes the restriction ofΩ1 to P(T ∗M(π,φ)). To

proceed, we must understandΩ
¯1 better.
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Let PM be the manifold ofC2-paths inM. Let ev :I ×PM→ M be the evaluation map
and pr :I×PM→ PM the projection to the second factor. DefineΦ = pr∗ev∗φ ∈ Ω2(PM),
where pr∗ denotes integration along the fiber. If we finally denote byq : P(T ∗M(π,φ))→
PM the map that retains only the base map of the Lie algebroid morphism, we realize
immediately that

Ω
¯1 = q∗Φ.

By the generalized Stokes’ theorem and the fact thatφ is closed, we obtain dΦ = α
¯
∗φ−β

¯
∗φ,

whereα
¯

andβ
¯

are the mapsPM→ M that assign to a path its values at 0 and 1, respectively.
Thus

dΩ
¯
= q∗(α

¯
∗φ − β

¯
∗φ).

Since the vector fieldξB does not move the endpoints, we conclude thatιξB dΩ
¯
= 0, viz.,

thatΩ
¯

is invariant as well. We write thenΩ
¯
= p∗ω as at the beginning of the section. The

2-formω onG(T ∗M(π,φ)) is clearly multiplicative since the product is defined by joining
the paths andΩ is defined as an integral. Moreover, recalling the definition of the source
and target mapβ andα, we observe thatα

¯
◦ q = α ◦ p andβ

¯
◦ q = β ◦ p. So we may write

the equation above as

dΩ
¯
= p∗(α∗φ − β∗φ).

Since dΩ
¯
= p∗ dω andp is a surjection, this shows thatω is relativelyφ-closed.

Finally, we need to prove that the 2-formω is non-degenerate. It is clear from the con-
struction thatω is non-degenerate along the identityM. The claim thus follows from the
following lemma.

Lemma 5.1. A multiplicative2-formω ∈ Ω2(G)on a Lie groupoidG ⇒ M is non-degenerate
if and only if it is non-degenerate along the identity M.

Proof. First of all, note that for anyδx ∈ TxG, andξ ∈ Γ(A), we have

ω( �ξ (x), δx) = ω( �ξ (v), β∗δx), (5.1)

ω(�ξ(x), δx) = ω(�ξ(u), α∗δx), (5.2)

whereu = α(x) andv = β(x). Eq. (5.1), for instance, follows from the fact that both
(δx, δx, β∗δx), and(0, �ξ (x), �ξ (v)) are tangent to the graph of the groupoid multiplication
Λ ⊂ G × G × G. Eq. (5.2)can be proved similarly. Now assume thatδx ∈ kerωx. It
follows fromEq. (5.1)thatβ∗δx ∈ kerωv sinceM is isotropic with respect toω. Therefore
β∗δx = 0 by assumption. Henceδx = �η(x). On the other hand, according toEq. (5.2),
one hasω(�η(u), TuM) = 0 sinceα is a submersion. This implies that�η(u) ∈ kerωu.
Therefore�η(u) = 0 by assumption. This implies thatδx = �η(x) = 0. This concludes the
proof. �

We need now to prove that the correspondence betweenφ-twisted Poisson structures and
twisted symplectic groupoids is a bijection. The proof is divided into two steps:
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Step 1. By construction (see[2,3]) the Lie algebroid ofG(T ∗M(π,φ)) is T ∗M(π,φ). As dis-
cussed inSection 2, the relativelyφ-closed, multiplicative, non-degenerate 2-form
ω determines an automorphismλ of T ∗M and a bivector fieldγ onM as inEqs.
(2.1) and (2.2). We have to show thatλ is the identity and thatγ = π. First of all we
observe that it is enough to consider(2.1)at the unit elementε(m) ∈ G(T ∗M(π,φ))

corresponding tom ∈ M:

ω(ε(m))( �ξ1(ε(m)), �ξ2(ε(m))) = γ(m)(ξ1, ξ2), ∀ξ1, ξ2 ∈ A|m.

By constructionε(m) is the equivalence class of the pathX(t) = m, η(t) = 0,
∀t ∈ I = [0,1]. The vector field�ξi, i = 1,2, evaluated atε(m) is the projection
to Tε(m)G(T ∗M(π,φ)) of the vectorξ̂i ∈ T(m,0)P(T

∗M(π,φ)) defined byξ̂i(t) =
(π#(m)ξi t, ξi dt). Observing then that forη = 0 the 2-formΩ1 of Eq. (4.2)vanishes,
we get, also using(4.1)

ω(ε(m))( �ξ1(ε(m)), �ξ2(ε(m)))=Ω0(m,0)(ξ̂1, ξ̂2) = 2
∫ 1

0
π(m)(ξ1, ξ2)t dt

= π(m)(ξ1, ξ2),

which showsγ = π. As for (2.2), observe thatω(ε(m))( �ξ1(ε(m)), v) is just
Ω0(m,0)(ξ̂1, v̂) with v̂(t) = (v,0). As a consequence

ω(ε(m))( �ξ1(ε(m)), v) =
∫ 1

0
〈ξ1, v〉dt = 〈ξ1, v〉,

which shows thatλ is the identity.
Step 2. Assume that(G ⇒ M,ω + φ) is anα-simply connected non-degenerate twisted

symplectic groupoid. Letπ be its inducedφ-twisted Poisson structure onM. Then
the above integration process integrates the Lie algebroidT ∗M(π,φ) into a Lie
groupoid, which is known to be isomorphic toG ⇒ M, and a multiplicative
2-formω′ on that groupoid. By identifying this groupoid withG ⇒ M, therefore
one may thinkω′ as a multiplicative 2-form onG. One needs to show thatω′ = ω.
By Step 1, we conclude thatω′ andω must coincide along the identity spaceM.
Let ω̃ = ω − ω′. Thenω̃ is a multiplicative closed 2-form onG and ω̃|M = 0.
Given anyξ ∈ Γ(A), it is easy to see that(�ξ(α(x)),0, �ξ(x)) is tangent to the graph
Λ of groupoid multiplication. On the other hand, for anyδx ∈ TxG, it is also clear
that(α∗δx, δx, δx) ∈ TΛ. It thus follows that

ω̃(�ξ(α(x)), α∗δx)− ω̃(�ξ(x), δx) = 0.

Therefore we have�ξω̃ = 0. Thus

L�ξω̃ = (di�ξ + i�ξd)ω̃ = 0,

which implies thatω̃ = 0 since any point inG can be reached by a product of
(local) bisections generated by�ξ. This concludes the proof.
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